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Abstract. Although there is a broad work to enhance flow and engage-
ment of User Experience (UX) in video games, they tend to generalize the
technique used for every player, this leads to undesired user experience
and negative outcomes. In addition, these works lack immersion and they
generalized users preferences when applied to video games. To overcome
this issue, we proposed a Q-learning algorithm that adjusts the game
to proper challenges and skills of every single user. Hence, we intensify
immersion by introducing the algorithm in a Virtual Reality (VR) video
game, a practical case is presented to demonstrate the approach.
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1 Introduction

Recent studies in User Experience (UX) has been applied to multiple applications
[12, 7, 6], as in video games, researchers use diverse techniques to evaluate user
experiences [33, 29] in terms of flow [8], these studies are evaluated with different
methods, such as interviews [33], Experience Sampling Method (ESM) [29, 10]
and questionnaires [18], being ESM the most used in the literature.

Video games are frequently considered a pleasurable and rewarding activity
[15, 21], as well as improving interest in a method that keep users at the limit of
their performance. They are considered a deeply engaging activity due to UX,
such as presence, immersion, flow, psychological absorption and dissociation [20].
Video games has been considered for multiple applications, in a systematic review
of computer games, Boyle et al. [5] stated that games for Science, Technology,
Engineering and Maths (STEM) with a learning purpose, had a knowledge
acquisition outcome [12], on the other hand, entertainment games addressed
affective, cognitive and physiological states, e.g. exercise [23], stimuli [7] and
life quality [6]. In contrast, Virtual reality (VR) is an emerging technology that
contributes to the presence and telepresence [18] that refers to the sense of being
in an environment, this technology is widely applied to different fields, such as
entertainment [19], education [22] and health [25].
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Fig. 1. Flow channels. (a) Flow channel from Csikszentmihalyi, 1990 (b) Adapted
from Csikszentmihalyi, 1997, figure represents, four combinations of high/low skills
and high/low challenges, representing a state equilibrium or unbalanced.

Ryan et al. [27] demonstrated that virtual worlds had considered human
interaction in virtual worlds in an attempt to relate it to player satisfaction.
Their survey experiments demonstrate that perceived in-game autonomy and
competence are associated with game enjoyment.

Csikszentmihalyi describes flow as a process of optimal experience, where
people under certain activity, put their abilities to their limit, by focused concen-
tration and elevated enjoyment [8, 9]. Hamari [13], describes engagement in flow
experiences as a reflection of complete absorption in a challenging activity, with
the occurrence of elevated concentration, interest and enjoyment without any
distraction. Schiefel et al. [28] reports that concentration is related to meaningful
learning, interest reflects elemental motivation and stimulates users to continue
the activity.

Flow experience relies on skills and challenges induced by an activity, where
anxiety is evocated when the challenges are higher than user skills, and boredom
is presence present when challenges are below user skills. According to the
literature, if challenges of the activity are raised, the goal is to improve the
player skills in order to enter a state of flow or optimal experience (see figure 1).

As algorithms enhance flow and engagement in video games approaches
target to improve UX, they generalize UX for every user. This paper proposes a
technique that does not generalize UX and targets to personal in Virtual Reality
video games. In the next section, we introduce related works within flow and
engagement in video games, in section 3 the proposal is presented and section 4
describes the conclusion and future work.
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Table 1. Literature review of flow control in video games.

Author Flow Engagement Technique Evaluation Control Experiment Game

Yannakakis Georgios N,
et al. [38]

- - ANN Survey Physical Children Bug-smasher

Gustavo Andrade,
et al. [2]

- -
Reinforcement
Learning (RL)

Statistical
analysis

Fight actions Simulation Knock’em [3]

Hunicke Robin,
et al. [16]

• • DDA Not mentioned
Fight and defense

actions
Simulation Half-Life

Pieter Spronck,
et al. [31]

- -
ML: Dynamic

Scripting
Simulation

Tactic of human
gameplay

Simulation
Combat

team game

Ibáñez-Mart́ınez,
Jesús, et al. [17]

• • DDA None Game parameters
Novel

strategy
Tennis

video game

Yannakakis Georgios N,
et al. [37]

• -
Feedforward NN

and fuzzy-NN
Statistical

analysis
Metric for real-time

entertainment
People

Pacman and
Bug-smasher

Vicencio-Moreira, Rodrigo,
et al. [35]

- -
Player-balancing

techniques
Statistical

analysis
Game mechanics People

Mega Robot
Shootout

Bian Dayi,
et al. [4]

- • ML: Random
Forest

Statistical
analysis

Difficulty level People
Virtual

driving task

Mirna Paula Silva, et al. [30] • - DDA
Statistical

analysis
Difficulty level Simulation

MOBA
(DotA)

Simone Amico [1] • • DDA
Statistical

analysis
Difficulty level People VR Game

2 Related Works

The review of the state of art in the analysis of flow from video games is extensive,
most of the work, focus on the characteristics of the game or the stimuli of the
outcome experience, either being in flow, anxiety or boredom.

Multiple studies in video games are focused to increase UX with different
techniques such as gamification [14], matchmaking systems, adaptive physics,
Dynamic Difficulty Adjustment (DDA) [16, 17, 30], Neural Networks (NN) [38],
Machine Learning (ML) [4] and Reinforcement Learning (RL) [2]. Although the
literature is broad, a minority of papers focus in flow and engagement. According
to our knowledge, only one work in the literature focused to enhance flow in
Virtual Reality video games [1].

Simone adjusted the game based on performance DDA (users score), affec-
tive DDA using Galvanic Skin Sensor —Galvanic Skin Response (GSR) is a
physiological signal that stimuli through emotions—, and a mixed performance-
affective DDA. Results showed that performance DDA led to easy game-play for
users, affective DDA led to difficult levels, but the mix of both of them led to the
best results. The paper stated that it did not find a significant difference between
participants who had experience in VR, and participants who did not. Table 1
shows a summary of related works that are applied to video games environments.

Although multiple works to enhance UX in video games exist, there are some
drawbacks that authors do not consider such as:

– Most of the work focus on Dynamic Difficulty Adjustment (DDA), this limits
only to different type of levels.

– Related works based on flow theory generalize the flow channel. They im-
prove the flow according to challenges proportional to users’ skills, or an
average from a group of participants, assuming that every user or player
has the same preferences, instead of personalized flow channels for every
single player.
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– Do not implement their applications in virtual worlds environment, this leads
to an absence of deep engagement.

– Do not implement Machine Learning techniques, they instead adjust video
game settings based on DDA and ETM.

Based on these drawbacks, and to solve these problems and ensure a flow
experience for every user, this paper proposes a technique to enhance flow
in VR video games in a personal way, according to user preferences with a
Reinforcement Learning algorithm.

3 Proposal

The work proposes a Reinforcement Learning (RL) algorithm. Sutton et al. [32]
stated that RL maps situations to actions to maximize a numerical reward signal,
“the learner is not told which actions to take, but instead must discover which
actions yield the most reward by trying them”. This framework is usually defined
in terms of the Markov Decision Processes (MDP), where an agent learns and
take decisions inside an environment at each sequence of discrete-time steps,
t = 0, 1, 2, 3, ... At each time step t, the agents takes an action from a finite set
of states(s) of the environment St ∈ S and on that selects an action, At ∈ A(s),
reaching a new state (s) and receives a reward, R(s, a, s′). MDPs maximize a
long-term performance criterion, which represents the expected value of future
rewards, the agents try to learn the optimal policy π. The policy maps from
perceived states of the environment to actions to be taken in the current state.

3.1 Q-learning Algorithm

Q learning is a model-free incremental learning algorithm which optimizes se-
quential decision-making problems [36]. Q-learning has been applied to diverse
problems in control systems, gaming and robotics [26]. Q-learning consists of
iteratively computing values for the action-value function:

Q(s, a)← Q(s, a) + α[r + γ. V (s′)−Q(s, a)]. (1)

In eq. 1 Q(s, a) is known as the action-value function, defined as the expected
return from state sn within an action (a). An optimal policy can be constructed
starting from every state, V (s′) = maxaQ(s′, a), where α is the learning rate and
γ is a discount factor. Q learning differs from other Machine Learning algorithms
since it does not require training data, the algorithm is able to find the optimal
solution by iterating itself.

3.2 Input Variables

In the proposed approach, the agent controls the actions of the VR video game
who is able to take actions at the end of every trial or level, the algorithm finds
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the parameters preferred by the user and take them into a state of flow. The
followings definitions for the algorithm are:

1. States: according to Csikszentmihaly in Fig. 1 (b), the following states (s)
are defined: anxiety, arousal, flow, worry, control, apathy, boredom and
relaxation, creating a set of states:

St = {s0, s1, s2, ..., s7}. (2)

2. Actions: to influence into users in an affective manner, we proceed to the
literature to see how to affect the states of the user. According to Fassbender
et al. [11] a study in a Reality Center found that participants were more
engaged listening to instrumental background music while doing an activity,
Tian et al. in [34] found that color scheme has a statistically significant
effect on user preferences. To trigger immersion in VR, Rautaray et al. in
[24] provided an analysis of the gesture recognition used in Human-Computer
Interaction (HCI), based on this work, it is reliable to get the most affective
gestures and applied them into a VR environment. According to the state of
art, these variables have an affective effect on users, hence their experience
while doing a certain activity can be changed or optimized. The set of actions
is listed as:

– A0 : increase time,
– A1 : decrease time,
– A2 : mute background audio,
– A3 : play background audio,
– A4 : colorful graphics,
– A5 : gray-scale graphics,
– A6 : toggle gesture technique:

At = {A0, A1, A2, ..., A6}, (3)

3. External information: user preferences are different for every player, an
Experience Sampling Method (ESM) is included after an acquisition stage
in order to get their preferences. Other information to the system which the
states depend on are: user time, user score, audio status, color interface and
technique used.

3.3 VR Video Game

Conforming to the input variables of the algorithm, a variety of VR video games
can be developed since the input variables are suitable for every game, the
variables can be easily modified. Hence the proposal can be applied to a broad
genre of games such as arcade, educational, shooter, fighting, racing, Multiplayer
Online Battle Arena (MOBA), sports and serious game. Figure 2 illustrates a
general representation of the proposed system.
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Fig. 2. General diagram of the system with the Q-learning algorithm.
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Fig. 3. Acquisition stage to get user preferences.

The Q-algorithm iterates after every trail and update the input parameters
of the system, in every trail the algorithm will verify if the state of flow has
been reached by the user —when Q-value has converged—, once it reach such as
state, the algorithm finds the optimal policy that enhance the user experience.

In an example of a practical case, an user plays the video game for the first
time, in order to get their preferences, an acquisition stage (Fig. 3) is required,
this consist in generating different cases (preferences) in function of customized
parameters of the video game (e.g. time, music background, interactive tech-
nique, etc). To get different cases, a trial of the video game is played for a short
time, afterwards the cases are created —cases are a combination of parameters
of the video game. These cases are considered as the input actions in the reward
matrix for the Q-learning algorithm.

According to Fig. 3, flow state will be distant for every user, e.g. an user can
prefer high challenges and low skills, in contrast another user can prefer high
skills and low challenges. The algorithm will iterate until it converges, in other
words when user loops in the state of flow.

4 Conclusion and Future Work

In this paper, a Q-learning algorithm to enhance flow and engagement in users
in a personal manner while being in a VR video game is proposed, hence every
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policy that reaches the flow state will be different in function of the user. The
proposal ensures that every user enjoys the game play.

Previous works improves user experience, ignoring the fact that every user
has different preferences when playing video games, e.g. there may be users that
prefer a higher levels of challenge that leads into difficult matches, in the other
hand, there may be users that will enjoy easier matches. Another drawback in
the literature is that most of the used techniques are applied to 2D video games,
these outcomes into less engagement in contrast to VR video games.

As a future work, we plan to test the proposed algorithm, a group of par-
ticipants will be tested during a 1 week with several trails. Statistical analysis
will be used to evaluate the results as well as an Experience Sampling Method
(ESM). Some failures could come from usability: video game is not property
designed, experiment: environment circumstances, process and validation can
result to undesired outcomes, User Experience: consistency, predictability, visual
representations and customizability are factors that need consideration in order
to avoid problem. According to our knowledge, the presented paper is the first
work to implement Reinforcement Learning algorithm to enhance user flow and
engagement in VR video game.
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